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10  POWER CALCULATIONS FOR THE STATISTICAL TESTS

10.1  Statistical Power and the Probability of Survey Unit Release 

The concept of the statistical power of a test was introduced in Section 2.3.2. The use of this
concept in optimizing the design of final status surveys was discussed in Section 3.8.1. The
power of a statistical test is defined as the probability that the null hypothesis is rejected when it
is false. It is 1��, where � is the Type II error of the test. 

The statistical power will have different implications for survey unit release, depending on
whether Scenario A or B is used. The same information can be expressed slightly differently. In
this report, it is expressed as the probability that the survey unit passes the statistical test, i.e., the
result of the test is the decision that the survey unit may be released. 

The relationship between this probability and the Type I and Type II errors was given in 
Table 3.1. Figures 3.9 through 3.12 show this probability as a function of the true residual
radioactivity concentration for selected values of � and � over a range of sample sizes. In many
cases, it will be sufficient to check the curve in these figures that corresponds most closely to the
situation at hand. In the following sections, the assumptions made and the calculations performed
in creating these figures are described. 

10.2  Power of the Sign Test Under Scenario A 

Recall that for the Sign test in Scenario A, the test statistic, S+, was equal to the number of
survey unit measurements below the DCGL . If S+ exceeds the critical value k, then the nullW

hypothesis that the median concentration in the survey unit exceeds the DCGL  is rejected, i.e.,W

the survey unit passes this test. The probability that any single survey unit measurement falls
below the DCGL  is found from Equation 9-2 or 9-3. The probability that more than k of the NW

survey unit measurements fall below the DCGL   is simply the following binomial probability:W

The indicated approximation is generally used when both Np and N(1�p) are five or greater. 
0(z) is the cumulative standard normal distribution function given in Table A.1.

With p calculated as in Section 9.2, Equation 10-1 yields the probability that the null hypothesis
is rejected when the true median of the residual radioactivity concentration in the survey unit is at
the LBGR. This  is the power of the test at the LBGR.

The probability, p(C), that any single survey unit measurement falls below the DCGL  when theW

survey unit median concentration is at any other value, C, can be determined by simply replacing
the value of the LBGR in Equation 9-2 with the value of C:
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The value of � actually obtained from Equation 10-1 should be close to that specified in the DQOs. It(1)

may not exactly equal that value when the sample sizes are small, since the critical value, k, can only take integer
values.
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Note that if C = DCGL , p(C) = 0.5. The assumption of normality is not critical in the aboveW 

calculations, since it is only being used to estimate the power. However, if a different distribution
is considered more appropriate, Equation 9-3 can be used to calculate p(C).

When the value of p(C) from Equation 10-2 is inserted in Equation 10-1, we obtain the
probability that the null hypothesis is rejected at the concentration C. When C = DCGL  , thisW

probability is the probability of a Type I error, � . This calculation can even be performed for(1)

values of C greater than the  DCGL  . The probability obtained is still the probability that theW

null hypothesis is rejected, i.e., that the survey unit passes the test.

If the probability that the null hypothesis is rejected (calculated from Equation 10-1) is plotted
against the concentration, C, the result is called a power curve. When the power calculation is
performed at the design stage, using an estimated value of ), it is called a prospective power
curve. When the calculation is performed after the survey, using the standard deviation of the
survey unit measurements as an estimate of ), it is called a retrospective power curve.

To illustrate the construction of a power curve, consider the example of Chapter 5. The DCGLW 

for this example was 15.9 and the LBGR was 11.5. The DQOs for � = � = 0.05 resulted in a
sample size of N = 21, using the estimate that ) = 3.3. From Table A.3, the critical value for the
Sign test with N=21 and � = 0.05 is k = 14. This is all of the information necessary to construct
the prospective power curve. To construct the retrospective power curve, we use the standard
deviation of the measurement data, 9.5, as the estimate of ).

The results of these calculations are shown in Table 10.1 and Figure 10.1.
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Figure 10.1  Example Power Curves: Sign Test Scenario A 

Table 10.1  Example Power Calculations: Sign Test Scenario A 

Prospective Retrospective
C (DCGL  � C)/) p(C)) power (DCGL  � C)/) p(C) powerW

(Eq. 10-2) (Eq. 10-1) (Eq. 10-2) (Eq. 10-1)
W

0 4.82 1.0000 1.000 1.67 0.9525 1.000
5 3.30 0.9995 1.000 1.15 0.8749 0.989
6 3.00 0.9987 1.000 1.04 0.8508 0.972
7 2.70 0.9965 1.000 0.94 0.8264 0.942
8 2.39 0.9916 1.000 0.83 0.7967 0.884
9 2.09 0.9817 1.000 0.73 0.7673 0.802
10 1.79 0.9633 1.000 0.62 0.7324 0.679
11 1.48 0.9306 1.000 0.52 0.6985 0.544

11.5 1.33 0.9082 0.998 0.46 0.6772 0.459
12 1.18 0.8810 0.991 0.41 0.6591 0.390
13 0.88 0.8106 0.914 0.31 0.6217 0.262
14 0.58 0.7190 0.627 0.20 0.5793 0.151
15 0.27 0.6064 0.217 0.09 0.5359 0.076

15.9 0.00 0.5000 0.039 0.00 0.5000 0.039
16 �0.03 0.4880 0.031 �0.01 0.4960 0.036
17 �0.33 0.3707 0.001 �0.12 0.4522 0.014
18 �0.64 0.2611 0.000 �0.22 0.4129 0.005
19 �0.94 0.1736 0.000 �0.33 0.3707 0.001
20 �1.24 0.1075 0.000 �0.43 0.3336 0.000
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Notice that the increase of ) due to a higher than anticipated measurement standard deviation
causes the retrospective power curve to differ considerably from the prospective power curve. In
Table 3.3, we see that �/) = (15.9 � 11.5)/9.5 = 0.46 results in a much larger required sample
size (over 100) to achieve the desired power. Recall that in this example, S+ = 11, which is
smaller than the critical value k = 14. Thus the null hypothesis was not rejected. The survey unit
did not pass. We now see that this might have been a consequence of having insufficient power
rather than the survey unit actually exceeding the release criterion. The lack of power was due to
underestimating the measurement variability.

10.3 Power of the Sign Test Under Scenario B 

Recall that for the Sign test in Scenario B, the test statistic, S+, was equal to the number of
survey unit measurements above the LBGR. If S+ exceeds the critical value k, then the null
hypothesis that the median concentration in the survey unit is less than the LBGR is rejected, i.e.
the survey unit does not pass. The probability that any single survey unit measurement falls
below the DCGL , is found from Equation 9-4 or 9-5. The probability that more than k of the NW

survey unit measurements fall above the LBGR  is simply the following binomial probability:

The indicated approximation is generally used when both Np and N(1�p) are five or greater. 
 0(z) is the cumulative standard normal distribution function given in Table A.1.

With p calculated as in Section 9.3, this is the probability that the null hypothesis is rejected
when the true median of the residual radioactivity concentration in the survey unit is at the
DCGL . This  is the power of the test at the DCGL .W            W

The probability, p(C), that any single survey unit measurement falls above the LBGR when the
survey unit median concentration is at any other value, C, can be determined by simply replacing
the value of the DCGL   in Equation 9-4 with the value of C:W
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may not exactly equal that value when the sample sizes are small, since the critical value, k, can only take integer
values.
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Note that if C = LBGR , p(C) = 0(0) = 0.5. The assumption of normality is not critical in the 

preceding calculations, since it is only being used to estimate the power. However, if a different
distribution is considered more appropriate, Equation 9-5 can be used to calculate p(C).

When the value of p(C) from Equation 10-4 is inserted into Equation 10-2, we obtain the
probability that the null hypothesis is rejected at the concentration, C. When C = LBGR, this
probability is the probability of a Type I error, � . This calculation can even be performed for(2)

values of C less than the LBGR. The probability obtained is still the probability that the null
hypothesis is rejected, i.e., that the survey unit passes the test, but it is not normally referred to as
the power. 

If the probability that the null hypothesis is rejected (calculated from Equation 10-3) is plotted
against the concentration, C, the result is called a power curve. When the power calculation is
performed at the design stage, using an estimated value of ), it is called a prospective power
curve. When the calculation is performed after the survey, using the standard deviation of the
survey unit measurements as an estimate of ), it is called a retrospective power curve.

To illustrate the construction of a power curve, consider the example of Chapter 5. The DCGLW 

for this example was 15.9 and the LBGR was 11.5. The DQOs for � = � = 0.05 resulted in a
sample size of N = 21, using the estimate that ) = 3.3. From Table A.3, the critical value for the
Sign test with N = 21 and � = 0.05 is k = 14. This is all of the information necessary to construct
the prospective power curve. To construct the retrospective power curve, we use the standard
deviation of the measurement data, 9.5, as the estimate of ). The results of these calculations are
shown in Table 10.2 and Figure 10.2.  

Notice that the increase of ) due to a higher than anticipated measurement standard deviation
causes the retrospective power curve to differ considerably from the prospective power curve.  
�/) = (15.9 � 11.5)/9.5 = 0.46 results in a much larger required sample size to achieve the
desired power. Recall that in this example, S+ = 13, which is smaller than the critical value,
k = 14. Thus the null hypothesis was not rejected. The survey unit passes. We now see that this
might have been a consequence of having insufficient power rather than the survey unit actually
meeting the release criterion. The lack of power was due to underestimating the measurement
variability.
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Table 10.2  Example Power Calculations: Sign Test Scenario B 

Prospective Retrospective
C (C � LBGR)/) p(C) power (C � LBGR)/) p(C) power

(Eq. 10-3) (Eq. 10-4) (Eq. 10-2) (Eq. 10-1)

0 �3.48 �1.210.0003 0.000 0.1131 0.000
5 �1.97 �0.680.0244 0.000 0.2483 0.000
6 �1.67 �0.580.0475 0.000 0.2810 0.000
7 �1.36 �0.470.0869 0.000 0.3192 0.000
8 �1.06 �0.370.1446 0.000 0.3557 0.001
9 �0.76 �0.260.2236 0.000 0.3974 0.003
10 �0.45 �0.160.3264 0.000 0.4364 0.009
11 �0.15 �0.050.4404 0.010 0.4801 0.026

11.5 0.00 0.5000 0.039 0.00 0.5000 0.039
12 0.15 0.5596 0.112 0.05 0.5199 0.057
13 0.45 0.6736 0.445 0.16 0.5636 0.119
14 0.76 0.7764 0.830 0.26 0.6026 0.207
15 1.06 0.8554 0.976 0.37 0.6443 0.336

15.9 1.33 0.9082 0.998 0.46 0.6772 0.459
16 1.36 0.9131 0.999 0.47 0.6808 0.474
17 1.67 0.9525 1.000 0.58 0.7190 0.627
18 1.97 0.9756 1.000 0.68 0.7517 0.750
19 2.27 0.9884 1.000 0.79 0.7852 0.854
20 2.58 0.9951 1.000 0.89 0.8133 0.919
21 2.88 0.9980 1.000 1.00 0.8413 0.962
22 3.18 0.9993 1.000 1.11 0.8665 0.984
23 3.48 0.9997 1.000 1.21 0.8869 0.993
24 3.79 0.9999 1.000 1.32 0.9066 0.998
25 4.09 1.0000 1.000 1.42 0.9222 0.999

In Scenario A, the power and the probability that the survey unit passes the test are equivalent. In
Scenario B, the power is equivalent to the probability that the survey unit does not pass. To plot
the probability that the survey unit passes,  the power is subtracted from 1. The result is shown in
Figure 10.3.

10.4 Power of the Wilcoxon Rank Sum Test Under Scenario A 

Recall that for the Wilcoxon Rank Sum (WRS) test in Scenario A, the test statistic, W , wasr 

equal to the sum of the ranks of the reference area measurements adjusted for the DCGL  . If WW   r

exceeds the critical value W  , then the null hypothesis that the median concentration in thec

survey unit exceeds that in the reference area by more than the DCGL   is rejected, i.e., theW

survey unit passes this test.

The power of the WRS test is very difficult to calculate exactly. However, a good approximation
is available (Lehmann and D’Abrera, 1975,p(C) Chapter 2, Section 3, pp. 69–75).
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Figure 10.2  Example Power Curves: Sign Test Scenario B 

Figure 10.3 Probability Example Survey Unit Passes: Sign Test Scenario B 
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If the distribution of the Mann-Whitney form of the WRS test statistic is approximated by a
normal distribution, the probability that the null hypothesis will be rejected when the alternative
is true can be calculated from: 

where W  is the critical value found in Table A.4 for the appropriate values of the Type I error, �,c

the number of survey unit measurements, n, and the number of reference area measurements, m. 
E(W ) and Var(W ) are the mean and variance of the Mann-Whitney form of the WRS testMW   MW

statistic. Values of 0(z), the standard normal cumulative distribution function, are given in 
Table A.1.

The Mann-Whitney form of the WRS test statistic is W  = W  � 0.5m(m+1). It is obtained byMW   r

subtracting from W  its minimum value, 0.5m(m+1). The mean of W  is r        MW

where p  is the probability that any single measurement from the survey unit exceeds a single1

measurement from the reference area by less than the DCGL  . This probability depends on theW

difference in median concentration between the survey unit and the reference area. When this
difference is equal to the LBGR, then  p  is equal to P  as calculated from Equation 9-7. For other1    r

values of the difference median concentration between the survey unit and the reference area, C,
we simply replace the LBGR in Equation 9-7 with C: 
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 (10-8)

(10-9)

Note that if C = DCGL , then p (C) = 0.5. The assumption of normality is not critical in theW   1

preceding calculations, since it is only being used to estimate the power. However, if a different
distribution is considered more appropriate, Equation 9-8 can be used to calculate p (C).1

The variance of  W    is:MW

p  is the probability that two random measurements from the survey unit will each exceed a2

single random measurement from the reference area by less than the DCGL ; and  p  is the W    3

probability that a single random measurement from the survey unit will exceed each of two
random measurements from the reference area unit by less than the DCGL  . When theW

difference in the concentration distributions of the survey unit and the reference area
measurements consists of a shift in the median, and the measurement distributions are
symmetric, then p  = p . Then the variance of W  simplifies to 2  3      MW

If the measurement distributions are normal, then p  is equal to the probability that two correlated2

standard normal random variables (i.e., with mean =  0 and variance = 1), with correlation
coefficient 0.5, are both less than (DCGL  � C)/()�	2  ). This probability also depends on theW

difference in median concentration, C, between the survey unit and the reference area. Even with
the simplifications employed, the values of  p  are not easy to calculate. Table 10.3 provides2

values of p  and p   as a function of (DCGL   � C)/) that can be used in calculating the mean and1  2      W

variance of W .  Nomographs of bivariate normal probabilities that can also be used for thisMW

purpose are given in Abramowitz and Stegun (1972).

The power calculated using Equations 10-5 through 10-8 is an approximation. This
approximation was compared against the power simulations for the WRS test reported by Gilbert
and Simpson (PNL-7409, 1992). It was found that the approximation is sufficiently accurate to
determine if the sample design achieves the DQOs. 
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Table 10.3  Values of p  and p  for Computing the Mean and Variance of W1  2        MW
 (3)

(DCGL  � C)/) (DCGL  � C)/)W p p p p1 2 W 1 2

�6.0 0.000010 0.000000 0.7 0.689691 0.544073

�5.0 0.000204 0.000010 0.8 0.714196 0.574469

�4.0 0.002339 0.000174 0.9 0.737741 0.604402

�3.5 0.006664 0.000738 1.0 0.760250 0.633702

�3.0 0.016947 0.002690 1.1 0.781662 0.662216

�2.5 0.038550 0.008465 1.2 0.801928 0.689800

�2.0 0.078650 0.023066 1.3 0.821015 0.716331

�1.9 0.089555 0.027714 1.4 0.838901 0.741698

�1.8 0.101546 0.033114 1.5 0.855578 0.765812

�1.7 0.114666 0.039348 1.6 0.871050 0.788602

�1.6 0.128950 0.046501 1.7 0.885334 0.810016

�1.5 0.144422 0.054656 1.8 0.898454 0.830022

�1.4 0.161099 0.063897 1.9 0.910445 0.848605

�1.3 0.178985 0.074301 2.0 0.921350 0.865767

�1.2 0.198072 0.085944 2.1 0.931218 0.881527

�1.1 0.218338 0.098892 2.2 0.940103 0.895917

�1.0 0.239750 0.113202 2.3 0.948062 0.908982

�0.9 0.262259 0.128920 2.4 0.955157 0.920777

�0.8 0.285804 0.146077 2.5 0.961450 0.931365

�0.7 0.310309 0.164691 2.6 0.967004 0.940817

�0.6 0.335687 0.184760 2.7 0.971881 0.949208

�0.5 0.361837 0.206266 2.8 0.976143 0.956616

�0.4 0.388649 0.229172 2.9 0.979848 0.963118

�0.3 0.416002 0.253419 3.0 0.983053 0.968795

�0.2 0.443769 0.278930 3.1 0.985811 0.973725

�0.1 0.471814 0.305606 3.2 0.988174 0.977981

0.0 0.500000 0.333333 3.3 0.990188 0.981636

0.1 0.528186 0.361978 3.4 0.991895 0.984758

0.2 0.556231 0.391392 3.5 0.993336 0.987410

0.3 0.583998 0.421415 4.0 0.997661 0.995497

0.4 0.611351 0.451875 5.0 0.999796 0.999599

0.5 0.638163 0.482593 6.0 0.999989 0.999978

0.6 0.664313 0.513387

When the values of p (C) and p (C) and the resulting values of E(W ) and Var(W ) are1   2       MW   MW

inserted in Equation 10-5, we obtain the probability that the null hypothesis is rejected at
concentration C. When C = DCGL  , this probability is the probability of a Type I error, �. .W

(4)
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The preceding calculations can even be performed for values of C greater than the DCGL  . TheW

probability obtained is still the probability that the null hypothesis is rejected, i.e., that the survey
unit passes the test.

If the probability that the null hypothesis is rejected (calculated from Equation 10-5) is plotted
against the concentration, C, the result is called a power curve. When the power calculation is
performed at the design stage, using an estimated value of ), it is called a prospective power
curve. When the calculation is performed after the survey, using the standard deviation of the
survey unit measurements as an estimate of ), it is called a retrospective power curve.

To illustrate the construction of a power curve, consider the example of Chapter 6. The DCGLW 

for this example was 160 and the LBGR was 142. The DQOs for � = � = 0.05 resulted in a
sample size of n = m = 10, using the estimate that ) = 6. Twelve samples each were actually
taken from the survey unit and the reference area. From Table A.4, the critical value for the WRS
test with n = m = 12 and � = 0.05 is W  = 179. This is all of the information necessary toc

construct the prospective power curve. To construct the retrospective power curve, we use the
larger of the standard deviations of the measurement data from the survey unit and the reference
area, 8.1, as the estimate of ). 

The results of these calculations are shown in Table 10.4 and Figure 10.4. In the figure it can be
seen that the retrospective power is slightly less than that specified in the DQOs. However, in
this example, the null hypothesis was rejected, so the question of the power is moot. The
retrospective power calculation is really only necessary when the null hypothesis is not rejected.
In that case, it is important to know that it was not rejected simply because there was insufficient
power. When the null hypothesis is rejected in spite of insufficient power, the survey designer
can consider himself lucky, but the conclusion is still statistically valid.

Table 10.4 Example Prospective Power Calculation: WRS Test Scenario A

C (DCGL   � C)/) E(W ) Var(W ) SD(W ) PowerW p p z1 2 MW MW MW

136 4.00 0.997661 0.995497 143.7 0.9 0.9�46.21 1.00

139 3.50 0.993336 0.987410 143.0 3.2 1.8�23.96 1.00

142 3.00 0.983053 0.968795 141.6 10.0 3.2�12.98 1.00

145 2.50 0.961450 0.931365 138.4 27.4 5.2�7.24 1.00

148 2.00 0.921350 0.865767 132.7 63.9 8.0�4.02 1.00

151 1.50 0.855578 0.765812 123.2 124.9 11.2�2.03 0.98

154 1.00 0.760250 0.633702 109.5 202.8 14.2�0.63 0.74

157 0.50 0.638163 0.482593 91.9 271.9 16.5 0.52 0.30

160 0.00 0.500000 0.333333 72.0 300.0 17.3 1.65 0.05

163 �0.50 0.361837 0.206266 52.1 271.9 16.5 2.93 0.00

166 �1.00 0.239750 0.113202 34.5 202.8 14.2 4.63 0.00

169 �1.50 0.144422 0.054656 20.8 124.9 11.2 7.13 0.00

172 �2.00 0.078650 0.023066 11.3 63.9 8.0 11.15 0.00
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Figure 10.4  Example Power Curves: WRS Test Scenario A 

10.5 Power of the Wilcoxon Rank Sum Test Under Scenario B

Recall that for the WRS test in Scenario B, the test statistic, W , was equal to the sum of thes  

ranks of the survey unit measurements adjusted for the LBGR. If W  exceeds the critical values

W , then the null hypothesis that the median concentration in the survey unit exceeds that in thec

reference area by less than the LBGR is rejected, i.e., the survey unit does not pass this test.

The power of the WRS test in Scenario B can be approximated in a manner similar to that used
in  Scenario A,  using Equations 10-5, 10-6 and 10-9:
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(10-10)

W  is the critical value found in Table A.4 for the appropriate number of survey unitc

measurements, n, and number of reference area measurements, m. Since under Scenario B, both
the WRS test and the Quantile test are used in tandem, the value of the Type I error, �,  decided
on during the DQO process, is halved for each test. Thus, the Table A.4 value for value of W  forc

�   = �/2 is used.  E(W ) and Var(W ) are the mean and variance of the Mann-Whitney formW       MW   MW

of the WRS test statistic for Scenario B, namely W  = W � n(n+1)/2. Values of 0(z), theMW  s  

standard normal cumulative distribution function, are given in Table A.1.

In Scenario B,  p  is the probability that any single measurement from the survey unit exceeds a1

single measurement from the reference area by more than the LBGR . This probability depends
on the difference in median concentration between the survey unit and the reference area. When
this difference is equal to the DCGL , then  p  is equal to P  as calculated from Equation 9-9. ForW    1    r

other values of the difference median concentration between the survey unit and the reference
area, C, we simply replace the DCGL   in Equation 9-9 with C: W

This is the same as Equation 10-7, with (DCGL  � C) replaced by (C � LBGR). Although theW 

definition of  p   has changed, its value may still be found from Table 10.3 when (C � LBGR)/)1

is  substituted for (DCGL  � C)/). Note that if C = LBGR then p (C) = 0.5. The assumption ofW           1

normality is not critical in the above calculations, since it is only being used to estimate the
power. However, if a different distribution is considered more appropriate, Equation 9-10 can be
used to calculate p (C).1
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In Scenario B,  p   is the probability that two random measurements from the survey unit will2

each exceed a single random measurement from the reference area by more than the LBGR ; and  

p  is the probability that a single random measurement from the survey unit will exceed each of3

two random measurements from the reference area unit by more than the LBGR. When the
difference in the concentration distributions of the survey unit and the reference area
measurements consists of a shift in the median, and the measurement distributions are
symmetric, then p  = p . If the measurement distributions are normal, then p  is equal to the2  3         2

probability that two correlated standard normal random variables (i.e., with mean =  0 and
variance = 1), with correlation coefficient 0.5, are both less than (C � LBGR)/()�	2  ). This
probability also depends on the difference in median concentration, C, between the survey unit
and the reference area. Again, values of  p  may be obtained from Table 10.3 when (C�LBGR)/)2

is substituted for  (DCGL  � C)/).W

Although the power calculated as above is an approximation, this approximation has been
compared against the power simulations for the WRS test reported by Gilbert and Simpson
(PNL-7409, 1992). It was found that the approximation is sufficiently accurate to determine if the
sample design achieves the DQOs. 

When the values of p (C) and p (C) from Table 10.3, and the resulting  E(W ) and Var(W ) are1   2         MW   MW

inserted in Equation 10-5, we obtain the probability that the null hypothesis is rejected at the
concentration C. When C = DCGL  , this probability is the probability of a Type I error, W

� = �/2. . This calculation can even be performed for values of C less than the LBGR . TheW  
(5)

probability obtained is still the probability that the null hypothesis is rejected, i.e., that the survey
unit passes the test, but it is not usually referred to as the power. 

If the probability that the null hypothesis is rejected (calculated from Equation 10-5) is plotted
against the concentration, C, the result is called a power curve. When the power calculation is
performed at the design stage, using an estimated value of ), it is called a prospective power
curve. When the calculation is performed after the survey, using the standard deviation of the
survey unit measurements as an estimate of ), it is called a retrospective power curve.

To illustrate the construction of a power curve, consider the example of Chapter 6. The DCGLW 

for this example was 160 and the LBGR was 142. The DQOs for �  = �/2 = 0.025, and � = 0.05,W

result in a sample size of n = m = 12, using the estimate that ) = 6. From Table A.4, the critical
value for the WRS test with n = m = 12 and � = 0.025 is W  = 184. This is all of the informationc

necessary to construct the prospective power curve. To construct the retrospective power curve,
we use the larger of the standard deviations of the measurement data from the survey unit and the
reference area, 8.1, as the estimate of ). 

The results of these calculations are shown in Table 10.5 and Figure 10.5.
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Figure 10.5  Example Power Curves: WRS Test Scenario B 

Table 10.5 Example Prospective Power Calculation: WRS Test Scenario B

C p p z(C�LBGR)/) E(W ) Var(W ) SD(W ) Power1 2 MW MW MW

136 �1.0 0.239750 0.113202 34.5 202.8 14.2 4.98 0.00

139 �0.5 0.361837 0.206266 52.1 271.9 16.5 3.24 0.00

142 0.0 0.500000 0.333333 72.0 300.0 17.3 1.93 0.03

145 0.5 0.638163 0.482593 91.9 271.9 16.5 0.82 0.20

148 1.0 0.760250 0.633702 109.5 202.8 14.2 �0.28 0.61

151 1.5 0.855578 0.765812 123.2 124.9 11.2 �1.58 0.94

154 2.0 0.921350 0.865767 132.7 63.9 8.0 �3.40 1.00

157 2.5 0.961450 0.931365 138.4 27.4 5.2 �6.29 1.00

160 3.0 0.983053 0.968795 141.6 10.0 3.2 �11.40 1.00

163 3.5 0.993336 0.987410 143.0 3.2 1.8 �21.15 1.00

166 4.0 0.997661 0.995497 143.7 0.9 0.9 �40.85 1.00

172 5.0 0.999796 0.999599 144.0 0.0 0.2�175.07 1.00

In the figure it can be seen that the retrospective power is slightly less than that specified in the
DQOs. However, in this example the null hypothesis was rejected, so the question of the power
is moot. The retrospective power calculation is really only necessary when the null hypothesis is
accepted. In that case it is important to know that it was not accepted simply because there was
insufficient power. When the null hypothesis is rejected in spite of insufficient power, the survey
designer can consider himself lucky, but the conclusion is still statistically valid.

In Scenario A, the power and the probability that the survey unit passes the test are equivalent. In
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Figure 10.6 Probability Example Survey Unit Passes: WRS Test Scenario B 

Scenario B, the power is equivalent to the probability that the survey unit does not pass. Thus,
the probability that the survey unit passes is one minus the power.  The result is plotted in Figure
10.6.


